81 research outputs found

    Proof-of-Concept Experiments for Quantum Physics in Space

    Full text link
    Quantum physics experiments in space using entangled photons and satellites are within reach of current technology. We propose a series of fundamental quantum physics experiments that make advantageous use of the space infrastructure with specific emphasis on the satellite-based distribution of entangled photon pairs. The experiments are feasible already today and will eventually lead to a Bell-experiment over thousands of kilometers, thus demonstrating quantum correlations over distances which cannot be achieved by purely earth-bound experiments.Comment: 15 pages, 10 figures, to appear in: SPIE Proceedings on Quantum Communications and Quantum Imaging (2003

    Large Quantum Superpositions and Interference of Massive Nanometer-Sized Objects

    Full text link
    We propose a method to prepare and verify spatial quantum superpositions of a nanometer-sized object separated by distances of the order of its size. This method provides unprecedented bounds for objective collapse models of the wave function by merging techniques and insights from cavity quantum optomechanics and matter wave interferometry. An analysis and simulation of the experiment is performed taking into account standard sources of decoherence. We provide an operational parameter regime using present day and planned technology.Comment: 4 pages, 2 figures, to appear in PR

    Low-dimensional quite noisy bound entanglement with cryptographic key

    Full text link
    We provide a class of bound entangled states that have positive distillable secure key rate. The smallest state of this kind is 4 \bigotimes 4. Our class is a generalization of the class presented in [1] (IEEE Trans. Inf. Theory 54, 2621 (2008); arXiv:quant-ph/0506203). It is much wider, containing, in particular, states from the boundary of PPT entangled states (all of the states in the class in [1] were of this kind) but also states inside the set of PPT entangled states, even, approaching the separable states. This generalization comes with a price: for the wider class a positive key rate requires, in general, apart from the one-way Devetak-Winter protocol (used in [1]) also the recurrence preprocessing and thus effectively is a two-way protocol. We also analyze the amount of noise that can be admixtured to the states of our class without losing key distillability property which may be crucial for experimental realization. The wider class contains key-distillable states with higher entropy (up to 3.524, as opposed to 2.564 for the class in [1]).Comment: 10 pages, final version for J. Phys. A: Math. Theo

    Optical implementation of a unitarily correctable code

    Full text link
    Noise poses a challenge for any real-world implementation in quantum information science. The theory of quantum error correction deals with this problem via methods to encode and recover quantum information in a way that is resilient against that noise. Unitarily correctable codes are an error correction technique wherein a single unitary recovery operation is applied without the need for an ancilla Hilbert space. Here, we present the first optical implementation of a non-trivial unitarily correctable code for a noisy quantum channel with no decoherence-free subspaces or noiseless subsystems. We show that recovery of our initial states is achieved with high fidelity (>=0.97), quantitatively proving the efficacy of this unitarily correctable code.Comment: 6 pages, 3 figure

    Tunable Indistinguishable Photons From Remote Quantum Dots

    Full text link
    Single semiconductor quantum dots have been widely studied within devices that can apply an electric field. In the most common system, the low energy offset between the InGaAs quantum dot and the surrounding GaAs material limits the magnitude of field that can be applied to tens of kVcm^-1, before carriers tunnel out of the dot. The Stark shift experienced by the emission line is typically 1 meV. We report that by embedding the quantum dots in a quantum well heterostructure the vertical field that can be applied is increased by over an order of magnitude whilst preserving the narrow linewidths, high internal quantum efficiencies and familiar emission spectra. Individual dots can then be continuously tuned to the same energy allowing for two-photon interference between remote, independent, quantum dots

    Optical one-way quantum computing with a simulated valence-bond solid

    Full text link
    One-way quantum computation proceeds by sequentially measuring individual spins (qubits) in an entangled many-spin resource state. It remains a challenge, however, to efficiently produce such resource states. Is it possible to reduce the task of generating these states to simply cooling a quantum many-body system to its ground state? Cluster states, the canonical resource for one-way quantum computing, do not naturally occur as ground states of physical systems. This led to a significant effort to identify alternative resource states that appear as ground states in spin lattices. An appealing candidate is a valence-bond-solid state described by Affleck, Kennedy, Lieb, and Tasaki (AKLT). It is the unique, gapped ground state for a two-body Hamiltonian on a spin-1 chain, and can be used as a resource for one-way quantum computing. Here, we experimentally generate a photonic AKLT state and use it to implement single-qubit quantum logic gates.Comment: 11 pages, 4 figures, 8 tables - added one referenc

    Experimental violation of Svetlichny's inequality

    Full text link
    It is well known that quantum mechanics is incompatible with local realistic theories. Svetlichny showed, through the development of a Bell-like inequality, that quantum mechanics is also incompatible with a restricted class of nonlocal realistic theories for three particles where any two-body nonlocal correlations are allowed [Phys. Rev. D 35, 3066 (1987)]. In the present work, we experimentally generate three-photon GHZ states to test Svetlichny's inequality. Our states are fully characterized by quantum state tomography using an overcomplete set of measurements and have a fidelity of (84+/-1)% with the target state. We measure a convincing, 3.6 std., violation of Svetlichny's inequality and rule out this class of restricted nonlocal realistic models.Comment: 10 pages, 3 figures, 1 tabl

    Quantum Interference of Photon Pairs from Two Trapped Atomic Ions

    Get PDF
    We collect the fluorescence from two trapped atomic ions, and measure quantum interference between photons emitted from the ions. The interference of two photons is a crucial component of schemes to entangle atomic qubits based on a photonic coupling. The ability to preserve the generated entanglement and to repeat the experiment with the same ions is necessary to implement entangling quantum gates between atomic qubits, and allows the implementation of protocols to efficiently scale to larger numbers of atomic qubits.Comment: 4 pages, 4 figure

    Quantum-inspired interferometry with chirped laser pulses

    Full text link
    We introduce and implement an interferometric technique based on chirped femtosecond laser pulses and nonlinear optics. The interference manifests as a high-visibility (> 85%) phase-insensitive dip in the intensity of an optical beam when the two interferometer arms are equal to within the coherence length of the light. This signature is unique in classical interferometry, but is a direct analogue to Hong-Ou-Mandel quantum interference. Our technique exhibits all the metrological advantages of the quantum interferometer, but with signals at least 10^7 times greater. In particular we demonstrate enhanced resolution, robustness against loss, and automatic dispersion cancellation. Our interferometer offers significant advantages over previous technologies, both quantum and classical, in precision time delay measurements and biomedical imaging.Comment: 6 pages, 4 figure
    corecore